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INTRODUCTION

This report addresses some theoretical problems associated with the

railgun. It is comprised of five sections. In the first section a fully

relativistic analysis is made of a simple prototype of the railgun.

Electromagnetic field criteria are obtained for the realization of maximum

propulsion speed. The second and third sections address an equation of state for

a strongly coupled plasma. Results relevant to two-component plasma given in the

second section are generalized to a multi-component plasma in the third

section. A significant result of this work is exhibited in a plot of PV/NkBT vs.

temperature T which exhibits variation with the shell structure of atoms in the

plasma. Application is made specifically to an aluminum plasma.

Studies of electrical conductivity in a strongly coupled plasma are reviewed

in the fourth section, and in the final section, an analytic expression is

obtained for nonlinear electrical conductivity in strongly coupled plasmas.

Figures and references as included at the end of each section.

DTIC Ac.. ..
ELECTE

.; DEC1 1986 -

Di.stI

pm 1



FUNDAMENTAL RELATIVISTIC SOLUTION FOR A RAIL GUN

Summary

A fully relativistic analysis is made of the dynamics of a rail-gun based

on three assumptions: (l) Ohm's law is valid in the rest frame of the plasma;

(2) total electron momentum is transferred to the projectile; and (3) motion

of the projectile is constrained to one direction. With these assumptions, a

relativistic equation for the velocity of the projectile is obtained whose

solution monotonically increases to one of two values depending on field

strengths. For B > E, the maximum velocity is cE/B whereas for E > B it is c

where c is the speed of light, and E and B are applied electric and magnetic

fields, respectively (iu cgs).
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INTRODUCTI ON

Attention has recently been given to dynamical properties of

1-5
electromagnetic propulsion. In the rail-gun device, a non-conducting pro-

jectile is propelled by a current-carrying plasma driven by the Lorentz force.

Plasma dynamics is more difficult due to ablation of the projectile and for

the most part previous studies have attempted to incorporate this effect.

In the present study. we return to a more elementary configuration for

the purpose of developing a fully relativistic study of this problem. Thus,

for example, it is assumed that the rest mass of the projectile is constant.

and that total electron momentum from the plasma is transferred to the projec-

tile. Furthermore, it is assumed that the projectile is constrained to move

in one direction. Our remaining assumption is that Ohm's law is valid in the

rest frame of the projectile.
6

With these assumptions at hand, a relativistic equation is constructed

for the projectile velocity. Solution to this equation reveals two asymptotic

velocities which depends on initial field strengths. Thus, for example, for

the case E > B, the velocity is c. the speed of lights whereas for B > E, the

velocity is cE/B. It is further demonstrated that for initial velocities less

than respective asymptotic values, velocities monotonically approach their

respective limiting values. For the case B > E, starting velocities greater

than cE/B are found to decay to this asymptotic value.

MA U



ANALYSIS

Our starting equation is Obm's law, which in the rest frame of the

projectile (primed coordinates) is written

#V

J- ~= E)

where a' is conduc.ivity. Transforming back to the lab frame (see Figure 1) we

find

J o'Y(E -B )(2)

z z y

where P-v/c and Y=(i-P2 )- / 2 . The charge density p, for a charge-neutral

plasma. is equal to zero. In the lab frame we take

E Ey (3)

B =B 
A

where hatted variables denote unit vectors. Inserting these values into (2)

gives

AJ--.Y(E- PB)y (4)

with I denoting microscopic electron velocity we write

qnu1 > (5)



Electron charge and density are q and a respectively. We further recall that

the density transforms as

n Yn' (6)

Combining the latter four equations gives

cj:1 E )Z (7)

where

(8)
qn

represents mobility in the rest frame.

Taking the average of the Lorentz force on electrons we obtain

-d<p> Z )I>B (9)
dt 7 c y

where we have recalled the vector property given by (7). We assume a total

transfer of electron momentum to the projectile which gives

N _A< p A =_L P(10)
dt y Z -dt-

where N is total number of current-carrying electrons in the colum. The

momentum of the projectile, P . is given by

P =MYV (1

where M is the mass of the projectile.

Combining (7). (9), (10), and (11) gives the desired equation of motion

..L Y 1V a ~&( 1 ) B (12)
dt c w

6
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where a is the length of the conducting column. I is the current

al x NqWE (13)

and

w = (14)
-B

Note in particular that from (13) we may write

E = (15)

where aA represents the volume of the conducting column in the rest frame.

Integrating (12) gives

V d

where n is the dimensionless time

c 2= 
(16)

and v =v 0 at TI =o" From (15) we see that n-oo at the singular paints u = c

and u= which represent asymptotic velocities. It will be shown below that

these asymptotic velocities are approached monotonically. With this property

we may conclude that for zero starting velocities maximum values are given by

E>•B v 1 =c (17)
max (7

E <B v =w
max

A sketch of these findings is shown in Figure 2.

To examine the monotonicity of v(t) we differentiate (12) to obtain

c dn c

7



We conclude that for v Sc and v < w, dv/dn Zo. Furthermore, with v =o at t =o,

(18) gives the starting acceleration (in dimensional form)

AM AM(19)

Note that for the case E < B, an initial velocity v°0 > w, decays to v w as is

evident from (18). Furthermore, as is clear from (15), asymptotic values (17)

are independent of initial velocities.

Characteristic times corresponding to the maximum velocities (17) are as

follows. In the limit w >>c. (12) gives the characteristic time

2

licz (20)

"i =  ~aIB  (o

with maximum velocity

v ( 1 ) = c (20a)
max

In the limit w<<c, (12) has the solution (with v=o at t=o),

v =w [i - exp(-t/, 2 )] (21)

where

= B1 "t(22)T2  B1

and

v (2) =W (22a)
max

We note that although r21<<,rip accelerations

(I) (2)

1 2

are the same.

.P
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APPLICATION

In applying the preceding results to experimental values, first we

rewrite w in practical units. Setting

E (19)
a

where V is the potential across the rails, permits (14) to be rewritten

w (20)+ aB

In practical units this expression becomes

ka) 103V(kV) (21)
s B(kgauss)a(cm)

3: 5,7
Typical experimental values are : V = IkV. a 1 lcm, B Z 200 kgauss which

gives w = 5km/s. This value agrees in order-of-magnitude with observed max-

imum velocities.

CONCLUSIONS

We have examined the relativistic solution to the rail-gun configuration.

Incorporating some simplifying assumptions we found that the projectile velo-

city goes monotonically to the minimum of the two velocities, c and cE/B. The

asymptotic value c corresponds to E < B whereas the value cE/B corresponds to

the limit B > E. It should be emphasized that this present study does zot

take into account thermodynamic effects such as momentum imparted to -he pro-

jectile from the exploding "fuse."

9
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ONE-COMPONENT PLASMA AND LARGE Z LABORATORY PLASMA

Summary

Stemming from an expression for the mean two-particle

potential energy of a two-component laboratory plasma comprised

of ions of charge Ze and electrons, it is argued that for suf-

ficiently large Z, thermodynamic properties of such plasmas are

the same as those relevant to Wigner's one-component plasma

model. Thus the following equation of state is obtained for a

laboratory plasma with Z > 5 and ?> 1.

P +Bd + 1+ (r + br 1/4 + cr-1/4

B

In this equation, P is pressure, T is temperature, n is ion

number density and a, b, c, d are known numerical constants.

2 3The plasma parameter F = (Ze) /akBT where 47a /3 represents mean

occupation volume per ion.

15

'm ~ ~ '



Strongly-coupled plasmas play a role in recombination

approaches to x-ray lasing [1], inertial-confinement fusion

devices (21, the interiors of certain super-dense stars [3],

and in plasma-driven rail-gun devices [4].

For the most part studies addressing stcongly-coupled

plasmas [5,6,7] have employed a plasma model due to Wigner [8]

which was conceived for the purposes of studying phase transi-

tion to the solid state. This medium is called "jellium", or

more commonly, a "one-component plasma", which often carries

the abbreviation, OCP. An OCP is comprised of ions moving in

a charge-neutralizing uniform negative background.

In the present work attention is directed at a laboratory

plasma comprised of ions of charge Ze and electrons in equilib-

rium at a given temperature. Examining the interaction energy

of the plasma indicates that for Z > 5, thermodynamic properties

such as internal energy and equation of state are given by cor-

responding expressions appropriate to an OCP. As an application

of this finding, the equation of state for such a relatively

high Z plasma is obtained from a previously constructed expres-

sion for the Helmholtz free energy [91.

With the plasma under consideration comprised of electrons

and ions of charge eZ, charge neutrality implies the constraint

eV(n e - Z nZ ) =0 (I)

where V is plasma volume and ne and nZ are electron and ion

number densities, respectivelv. The aDroximate eaualitv in

' i



(1) derives from the inherent statistical nature of a plasma.

For a two-component plasma, three interactions contribute to

the mean two-particle potential energy and we write

<V> = (4) 1/3 [n1 / 3 e
2 - (nnz) 1 /6Ze 2 + n 1/3(Ze) 21 (2)

With the constraint (1) we may set ne - Z nZ and (2) becomes

<V> = e2(4rnZ) /3 (Z1 /3 - 7 /6 + Z2) (3)

Thus in the limit

Z2 >> ZI1 1 7  (4)

the relation (3) reduces to

<V> = (41nZ)1/3 (Ze)2 (5)

which we recognize to be the interaction potential of a one-

component plasma comprised of ions of charge Ze.

This similarity may be further illustrated through the

plasma parameter [I0,ii

2/3 <V> <(>Y < K E7 5 _ (6)

K B

where <EK> is mean kinetic energy per particle. The relevance

of y to the properties of a plasma is evident from (6). Namely,

with this expression we may conclude that a plasma is strongly

coupled when y > I and weakly coupled when y << 1.

Substituting (5) into (6) gives (dropping the Z subscript

on n )

17



2/3 (Ze) 2(47rn) /3  (7)
kBT

which, again, is the plasma parameter relevant to an OCP with

ions of charge Ze.

The canonical expression for y is v',-n by

Y 4 1 3 (8)

where XD is the Debye distance. 13'14 With the latter two expres-

sions we find

2 k kB T(9

'D Z (9)4lTn(Ze)

which is seen to be the Debye distance for an OCP comprised of

ions of charge Ze.

These relations may be cast in terms of a plasma parameter

more common to studies of OCP. It is given by

r = (Ze) 2/akBT (10)

where a3 is a measure of the mean occupation volume per ion.

That is,

sa 3 n 1 (i)

The parallel structure of y and r is evidenced by r'riting (8):

m I



Y (Ze) (12a)

kBT

r Ze) 2/a(1b
F = kB T (12b)

kBT

so that

y - 3

We may conclude that the previously stated criterion that

separates weakly from strongly coupled plasmas may also be given

in terms of r.

Thus we find that in the limit (4), the coupling and

parameters of a two-component plasma of electrons and ions of

charge Ze reduce to those relevant to an OCP of ions of charge

Ze in a negative background. We may conclude that thermodynamic

properties such as internal energy and equation of state for a

two-component laboratory plasma with Z >> Z1 1 7 are the same as

those of an OCP comprised of the same species of ions.

Numerical work of Slattery, Doolan and DeWitt [9] estab-

lished the following expression for internal energy U for

the fluid phase of an OCP.

U 1 /4 1i/4

NYB ai + b/ + cr + d + e/N (13)
B

where N is total ion number and

- -0.898, b - 0.950, c = 0.190,

d - -0.815. e = 0.010

19



The Helmholtz free energy, F, may then be obtained through

integration. Namely,

F(r) . r u( T + 3] F(yl)

Nk T r rT 1 dr' + (14)

B 1L B jB

The normalized free energy F(PI)/NkBT, .,lin r i1 was calculated

employing various contributions over the unit interval. There

results (in the limit of large N) [9]

(15)

F(r) = + 4(brl _ c- + (d +3) ln r - (5+4b- 4c +1.152)

B

With this value of free energy at hand an equation of state is

obtained from the thermodynamic relation

= - (16)P °Wa IT

To perform this differentiation we first rewrite r (10,12b) in

explicit form

4,,2 N 1/3
=. 'kBT L-V j (17)

There results

-' r (18)
3aiV

Differentiating (15) we obtain

I 3F + -3/4 -1-5/4 + E
Nk T V = [a + bP cr + (d+3)" ] -- (19)

20



With (16) and (18) we then obtain

PV + + (r + br1/4 + C-1/4) (20)

With the previously stated argument we may conclude that (13)

and (20) are valid energy and equation-of-state formulas for a

laboratory plasma comprised of ions and electrons in equilibrium

at a given temperature and obeying the constraint (4). Note in

particular that for Z = 5 (completely ionized boron) ZI'I7/z
2

0.26. For Z =13 (completely ionized aluminum) this ratio

becomes 0.12. Thus the proposed equivalence should be valid for

Z > 5. It is also important to note that this equivalence is

not appropriate to processes where the dynamics of electrons

come into play, such as conductivity (12].

21
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UNIFIED EQUATION OF STATE FOR WEAKLY AND STRONCLY COUPLED PLASMAS

Summary

An argument is presented which permits a laboratory plasma

of arbitrary ionization to be viewed as a one-component plasma.

In this equivalence, effective ion charge number 7 is dependent

on temperature and ion number-density. The plasma parameter T

thus gains additional dependence on these parameters due to its

dependence on f. Employing previous results for the internal

energy of such fluids gives the following unified equation of

state for a laboratory plasma valid over the interval,

0 <T < 300.

PV - Nk T +I 1u* U'7)G -e + -(7 Hl

Here we have written U and UC, respectively, for weakly and

strongly-coupled excess energy and O(x) represents the unit

step function. The volume, pressure, temperature, and number

of ions in the plasma are written V, P, T and N, respectively.

A numerical plot of this equation as a function of temperature

reflects the shell structure of atoms in the plasma.

23



INTRODUCTION

The study of strongly-coupled plasmas is relevant to x-ray

lasing, I inertial-confinement fusion devices, 2 the interior of

certain super-dense stars,3 and in plasma-driven rail-gun

devices. Studies of strongly-coupled plasmas have, for the

most part, '' 7 utilized a model due to Wigner 8 in which the

plasma is viewed as ions moving in a uniform charge-neutralizing

background. This model is called a one-component plasma and

carries the abbreviation OCP.

In an earlier work 9 a means of constructing the equation

of state for a laboratory plasma was described which permitted

use of OC results. 10 However the consistency of this analysis

required a two-component fluid and therefore addressed fully

ionized plasmas only.

In the present work, stemming from an ar.lysis of

Zel'dovich and Raizer, the results of the aforementioned

study are extended to a laboratory plasma of arbitrary ioniza-

tion. The work of Zel'dovich-Raizer permits the plasma to be

viewed as a two-component species comprised of electrons and

ions with effective charge-number, Z. The parameter Z emerges

as an implicit function of temperature T and ion density, n.

Thus the equation of state is found to contain additional

temperature and density dependence in Z as it appears in the

cffective plasma parameter, T.

24



The present work employs c-dependent expressions for the

internal energy previously obtained for strongly coupled1
0

(1 < r < 300) and weakly coupled 12 (r << 1) OCP. The smooth

connection of these two curves near P z 0.5 motivates the

extrapolation of the strongly-coupled form to the domain

0.5 < "F < 1 This connecting segment results in a unified

equation of state valid over the entire domain, 0 < T < 300.

Two interesting effects run through the analysis. The

first of these pertains to the form of the effective plasma

parameter

n 1/3-z2 (Tn)
T

For the most part, previous plasma studies did not view Z as

temperature dependent. Under such circumstances, the plasma

parameter grows large with decrease in temperature. However,

in the present study 7 is seen to increase monotonically with

T (with steps at ionization shells) and we find an overall

decrease of 7 with T. The second interesting observation is

that the shell structure of atoms in the plasma is reflected

in the equation of state.

As the analysis is dependent on the details of ionization

energies, a specific material must be chosen prior to numeri-

cal work. The present study addresses aluminum. Thus plots

of PV/NkBT vs T as well as T (where P is pressure) are pre-

sented for n in the range 1015 - 1020 cm -3  Plots are also

included of 2 vs T.

25



ANALYSIS

Review

Previous Finding

In ref. 9 it was noted that for a two-component plasma

one may write the mean two-particle potential energy as

<V> z4 1/3 ne1/ 3 e
2 _ (nen)i/6 Ze 2 +n1/3 (Ze)2] (1)

where n e and n are, respectively, electron and ion number den-

sity. With conservation of charge, ne 
= Zn, (1) becomes

<V> 1/3 (Ze) 2  (2)

providing

Z2 >> ZI1 1 7  (3)

We recognize (2) to be the average interaction potential of a

OCP comprised of ions of charge Ze. A key parameter in the study

of strongly-coupled plasmas is the plasma parameter, which with

(2) is written

<V> 4n 3  (Ze)2

k Br = kBT (4)

Thus a plasma is strongly coupled for 7 > 1 and weakly coupled

for F << 1.IK
.

With these observations and employing a previously obtained

expression for the internal energy of an OCP, 10 an equation of

state was obtained relevant to the domain I < 7 < 300.

-.--



Thermodynamic Relations

Prior to generalizing these results to a laboratory plasma

of arbitrary ionization we present a brief review of basic ther-

modynamic relations relevant to a plasma.

An equation of state for a plasma is related to internal

energy in tlc following manner (see Appendix A).

PV U*

NkB T 3kBT

where we have set

U= U- Nk T (6)2 B

Here U denotes total plasma energy and U* "excess" internal

energy. Note that if U* is known, then with the thermodynamic

relation

p 9FJ 3F aI'
3V T ar 3V T

and (4), we may write

BB

where F is the Helmholtz free energy. Integrating the preceding

equation at constant T gives, with (5),

rfr rU* + 3T~) FF0
- + 31 NkBT (7)

0

27



Thus knowledge of U* as a function of r for a plasma gives both

the equation of state (5) and the free energy (7).

Effective ionization

As noted in ref. 11, a plasma in Sbi equilibrium at a

given temperature is characterized by ions of effective charge

eZ, where e is (positive) electron charge. Thus, the results

of ref. 9 carry over with Z replaced by an effective ion charge

number, Z. Specifically one may write (1) with Z replaced by

7 and again we find reduction to (2) relevant to an OCP, in the

domain (3).

The ion-charge number, Y(T,n) is obtained in the following

manner. First the discrete ionization energies, I(Z), as a

function of degree of ionization, Z, are connected by line seg-

ments, such as depicted in Fig. I for the case of aluminum.
13

This gives the continuous function T(Z). The function Z(T,n) is

then obtained by solving the following implicit equation, which

stems from the Saha equation as well as conservation of charge,

AT= n exp- T (8)

where A = 6 x 021 cm- 3 eV "3 /2 and T is in eV. In the present

work this procedure for obtaining f(T,n) was carried out again

for the case of aluminum. Results are shown in Fig. 2 for ion

densities (1015- 1020) cm-3.

The plasma parameter 7, as given by (4), now includes addi-

tional temperature and density dependence through Z(T,n). That

is,

28



_ 4T [ 1/3 Z(T,n)e] 2

k kBT  (9)

A plot of this parameter vs T is shown in Fig. 3.

Equation of State

Ordinarily for an OCP, U* U*(r). To incorporate our

findings as described above in an equation of state we write

U * = U *(J ) , where 7 is given by (9) with Z determined from (8).

Thus (5) becomes

y ,* 7 U+
NET 3N T

In the weakly coupled domain (F < 0.5), U* was obtained 1 2 as a

function of e = V3 F3/2 Converting these results to a

P-dependent function gives

N-C-rB = ar 3 2 + br In r + c 3 + d r In P + elf (la)

B- - - 1 1 1
B9

In the strongly-coupled domain, 9 over the interval I < F < 300,

we have

USC 4 -1/4 (11b)

N T = a2 +b 2  2 2B

Constants have the following values
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aI M -0.866 , bI = -1.125 c1 = -1.102

d - -2.923 , eI M 0.243

a2 - -0.898 , 2 - 0.950 , c2 - 0.190

d2 ' -0.815

Inserting these results into (10) gives two equations of

state relevant, respectively, to the two said domains. Numeri-

cal plots (see Fig. 4) of these results strongly suggest an

interpolation insert over the interval 0.5 < r < 1, given

namely by the strong coupling form (11).

With this interpretation at hand one is able to write a

unified equation of state valid over the whole interval,

0 < r < 300. Namely,

PV = NkBT + C [~( e(-j1 + u*c(7) 0 -F- (12)

where T, UC Uan are given respectively, by (9) and (11),

and O(x) is written for the unit step function 3(x) - 1, x > 0

and zero elsewhere.

In application of (12) one should recall that T is

implicitly dependent on T and n through its dependence on

given by (8). A numerical plot of PV/NkBT vs T obtained from

(12) is shown in Fig. 5. Note that the shell structure of

atoms in the plasma is reflected in this equation of state.
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CONCLUSIONS

A unified equation of state was constructed for a labora-

tory plasma of arbitrary ionization. This was achieved by

introducing an effective ion charge-number, Z(T,n), obtained

from the equations of Saha equilibrium. This form of T was

then used to obtain a generalized plasma parameter, '(T,n).

Employing this value of T in previously obtained expressions

for internal energy, and effecting an interpolation over the

internal 1 < . < 1, gave a unified equation of state over the
total interval 0 < " < 300 for effective ionization -2 >> f1.17

It is important to note that the equivalence between a labora-

tory and one-component plasma described in Section A.1 is not

relevant to processes where the dynamics of electrons come into

play, such as conductivity.15
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Appendix A

In this appendix we wish to derive the relation (5) rele-

vant to an OCP. First we recall the statistical mechanical

relations 1

U 3 + N f ~~~)r 2 dr (A.1)
NkB T2kB T '

PV 1 N u0 (gr)r 3

NVTT 6VkT J 'rgr4rdr (A.2)
B B 0

In these expressions, g(r) is the radial distribution function,

and u(r) is the two-particle interaction potential. Let us

assume the form

u(r) -a r- (A.3)

where a and s are constants. Inserting the derivative

u'(r) -u

into (A.2) gives

PV -1+ NS urgrZ7 r(A.4)
MB T urgB )F r d

which may be combined with (A.1) to give

PV s(U (A.5)

For the Coulomb interaction, s =1I, and (A.5) returns (5).
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REVIEW OF ELECTRICAL CONDUCTIVITY IN P1.ASMIAS

Summary

A review of studies of electrical conductivity in a plasma

is presented. A brief description of domains and parameters of

plasma physics encountered in studies of conductivity is

included. An historical account of conductivity calculations

is given and it is concluded that one such study is most rele-

vant to conductivity in a strongly-coupled classical plasma.

Expressions and numerical results stemming from this study are

included.
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Introduction

The main thrust of this report addresses state-of-the-art

studies of conductivity in a classical strongly-coupled plasma.

Preparatory to this discussion, in part II of the report,

plasma domains are introduced and various important parameters

are discussed relevant to the natural separation of these

domains. A brief description of the fluid picture for a plasma

is included as well as a discussion of domains relevant to the

case where a magnetic field is present.

In part III various plasma models are introduced and a

discussion of Saha equilibrium is included.

Part 1V presents a brief historical review of electrical

conductivity calculations for a plasma.

:n part V formulas and results of numerical evaluation

for electrical conductivity are presented. Values of electri-

cal conductivity as a function of the plasma and compression

parameters are given in a table at the conclusion of the report.

Plasma Domains

Parameters

Physical domains of a plasma divide into four basic areas

as depicted below.

%
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Weaky

CopeFope Degenerate Degenerate

I Q Q

The parameters in the above inequalities are defined as

follows. The quantum degeneracy parameter A is given by

A nX 3 (1
Q7 d

where n is particle number density and

2 (2)

is the thermal deBroglie wavelength.

-1/3Thus, in the quantum domain d > n- and the deBroglie

wavelength is of the order of interparticle separation.
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The plasma parameter

(Ze)
2

akBT
(3)

(4-ra3/3 - n-I

is a measure of the ratio of mean two-particle ion potential to

particle kinetic energy. Ion density is written nZ. When

P << 1, mean kinetic energy dominates potential interaction and

the plasma is weakly coupled. In the limit r > 1 mean potential

energy begins to dominate and the plasma is strongly coupled.

For extreme potential dominance, 7 >> 1, and one expects the

medium to undergo a phase change.
2 ,3

The quantum parameter L" is defined as followsl

(4)
6nATF

where

2 - E.
(5)

is the Thomas Fermi length, 45 EF is the Fermi energy and is

the dielectric constant of the medium. In the weakly coupled

degenerate domain 7Q << I and densities grow so large thatQ C

kinetic energy due to the uncertainty principle dominates ooten-
A

tial energy.

Fluid Picture

The Dlasma frequency is given by (in cgs)

. = 0ne- (6)
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Let v denote the dominant collision frequency of plasma con-

stituents. When

\) >> wp (7)

collisions tend to diminish collective plasma behavior and fluid

behavior ensues. 7 ,8 This situation is depicted below.

Plasma

P p
Collective Hydrodynamic
behavior picture

Magnetic Domains

If a magnetic field B permeates the plasma then additional

criteria come into play. We recall that a free particle of

charge e and mass m undergoes circular motion in a magnetic

field with frequency (cgs)

eB (8)
mc

If plasma particles suffer collisions at frequency ,, then at

v>> Q, the circular magnetic motion is lost to collisions and

if further v >> the plasma is fluid like.

If an electric field E is also present then with Ohm's

law (cgs)
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j Oc (9)

where o is charge density and c is the speed of light. We may

conclude chat for oE >> JB/c the plasma is nonmagnetic. These

criteria are listed below.

Plasma

9 0

I _ _ _ _ _ _ _
07 ; 1'0

Orbital 1 Fluid i Magnetic ,onmagnetic

>" I v >> JB/c > -, E JBc <« E
') IJ ,.

As previously noted, a plasma with a magnetic field is

fluid-like for v >> ,. If, further, JB/c > oE, then we may

term the plasma magnetofluid dynamic. Plasmas with v > 0, are

typically termed magnetohydrodynamic (MHD).9

An assortment of waves may propagate in a plasma in these
10,11,12

various domains.

Fluid Picture and Transport Coefficients

In concluding this section we estimate the conditions

under which a plasma is Eluid like with respect to specific

transDort processes. in making this estimate we recall that

46



different collision processes pertain to different transport

coefficients. Thus, for example, in calculation of viscosity
8

in a plasma, ion-ion collisions play the major role. For this

case we take the magnitude of the Coulomb ion-ion cross section

to be

.. = r(Ze) 2 /kBT]2  a2  (10)

This gives the mean free path

i/nzaii (11)

and collision time

Z/vkBT/M (12)

where M and n, are mass and number density of the ion species.

Combining these relations and recalling (3,6) we obtain (with

n - ZnZ)

22 16 M 1 (13)
p T Fz 'r33

We may conclude that for calculation of viscosity, a fluid pic-

ture is appropriate for

> 21.4 (A/Z) I/3  (1)

where A is atomic mass.

For evaluation of electrical conductivity, electron-ion

collisions dominate 8 and we write

7Z
2 e4

ei (kBT)2

and
47
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when atoms are stripped of all electrons leaving bare nuclei

and electrons in the plasma.

Saha Equilibrium

The equilibrium state of a laboratory plasma is described

15,16,17by the Saha equation

n 2uZ  exp(-AEZ/kBT)- (19)
nZ-1 UZ-1 ned3

We have written nZ for the density of ions of charge eZ and

Ez is the ground state ionization energy for the transition

Z - I - Z. The electronic partition function uZ is given by

UZ Z g= 1 i) (T 20)i=OB

where g a , are, respectively, statistical weight and

excitation energy of the i th excited state of the Z ion. The

series (20) terminates at the value i* corresponding to orbits

whose radii are comparable with mean distance between constitu-

ents of the plasma. It has been demonstrated by Zel'dovich and

Raizer 17 that for a majority of ions, the ground-state term in

(20) dominates over the remaining terms. Thus (20) reduces to

n7 2g(0 ) exp(-LEz/kBT)
ZZ3 (21)nz-1 ()ne' d

Z1 e



Z (16)
nz~ei

In this latter expression we have recalled that it is the

'target' ion density which is relevant. There results

2 2 16 M Z13

Thus, for a fluid picture to be relevant for electrical conduc-

tivity one must have

r > 21.4 ZA1 / 3  (18)

The inequalities (13) and (17) follow from the fluid-picture

criterion (7).

Plasma Models

OCP and Other Models

A model often employed to describe a strongly coupled

plasma is the so-called one-comoonenc olasma, which carries

the abbreviation, OCP. This model is comprised of ions moving

in a charge-neutral background. It was conceived by Wigner 1 3

to study phase change to the solid state. An extensive review

of the physics of an OCP has been given by Ichimaru. 14  This

model is often employed in the study of strongly coupled

plasmas.

The simplest laboratory plasma model is that of a fully-

ionized or two-comDonent plasma comprised of electrons and ions

of charge Ze. This situation is approached in the limit of

very high temperature (kBT >> IZ, I 3 = tomic ionization energy)
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This equation indicates that in an actual laboratory plasma

at finite temperature, all ionic species of atoms are present

at varying relative densities.

Historical Review

Earliest expressions for electrical conductivity in a

plasma are due to Spitzer and Harm20 and Braginskii. 21 These

results are relevant to a fully ionized nondegenerate weakly-

coupled plasma.

These findings were improved upon by Rogers, DeWitt and

Boercker 22 in a study of electrical conductivity in a partially

ionized non-degenerate plasma. In this calculation the authors

employed a Chapman-Enskog 23 '24 expansion (with Sonine poly-

nomials) of the Williams-DeWitt 25 kinetic equation. Scatter-

ing from electronic shells of ions and neutrals was treated

using effective interaction potentials developed by Rogers.
26

We note that the Williams-DeWitt equation is the standard

Boltzmann equation with quantum corrections entering through

the scattering cross section. It is sometimes called a

3alescu-Lenard equation due to shielding structure included in

the interaction potential.

In the work of Boercker et ali. a plasma collision fre-
' 28,29

quency is developed which correctly reduces to the Ziman

and 3alescu-henard 25 results in appropriate limits. The Ziman

formulation considers a strongly-coupled degenerate plasma at

.O.



The work of ref. 27 is a generalization of Boercker's3 0

in which a t-matrix formulation of the Kubo formula 3 1 is

employed to calculate electrical conductivity.

Working with the Uehling-Uhlenbeck quantum generalized

Boltzmann equation Lampe, 33 in an early study, employs a

Chapman-Enskog expansion about the Fermi-Dirac distribution

to calculate thermal conductivit', <, which may be related to

mobility, u, through the Einstein relation

eK

nkBT cV

Here we have written c V for specific heat per particle in the

plasma.

Lee and More 34 employ a Krook-Bhatnager-Gross 2 3 equation

to calculate transport coefficients in a plasma. This technique

depends on knowledge of the relaxation time which the authors

calculate working with the Fermi-Dirac equilibrium distribution.

Electrical Conductivity

Strongly Coupled Classical Plasma

The most relevant expression for electrical conductivity

in a strongly coupled quasiclassical plasma among those

described in the preceding section, appears to be that obtained

by Boercker et al. 27 It is given by

mfl (22)2m n

mvC.



where . the plasma parameter, is given by (3). With

S (k BT) the collision frequency v) is given by

mn 3/2 edk ku3 e- .2k 2/8m Uei(k)v ei(k)

TZ L2rm £_(kO) ei e(23)

[S ee(k)Sii(k) - S ei(k)Sie (k)]

A closely allied expression for ) was obtained by Baus et al. 35

In (23), S ab(k) is the (dimensionless) dynamic structure factor

relevant to the two components, a and b. The electron-ion

Fourier transformed potential is vei(k) and the Fourier trans-

formed generalized potential is uei(k). These potentials have

dimensions of energy x volume. The transform u i(k) satisfies

the relation

Uab(k) = -Cab(k)/3

where Cab (k) is the Fourier transform of the direct correlation

function. 36 ,37 The factor 'k(7) in (22) is a correction factor

to account for the fact that ) as given by (23) is equivalent

to a single-Sonine polynomial approximation.

A rough estimate of 'k(r) is obtained in the weak-coupling

limit which gives

:"193 +p(3 T/2)I/

D

2,
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(Recall that in cgs units a has the dimensions of frequency.)

The function A is given by

-i . _ 1%2k /8 m u .(k)
A = jdke k k/Si8 k
4e , e k(ko) S (k) 25)
4Tre' 2

In the Debye-Hivckel limit one obtains

eI / a E1 (1/a) - I e E (1/2a)

(26)

7 (In a- y- in 2) 7 (in a - 1.27)

where

8m

D

E1 (x) is the exponential integral and vis -uer's constant.

Numerical Results

Numerical evaluation of A given by (25) was performed

using direct correlation functions and structure factors from

solution of the hypernetted chain equation (HNC).37 With these

values of A inserted into (22,23), numerical integration for

a!WD was performed 2 7 at two values of the compression

1,6,36
parameter

' r -

where a is the Bohr t..u±us. Values of 7/, stemming from the,4 p
Debye-Hiickel result (26) were also obtained. These valaes are

listed in Table !.
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"'ab e 1. Value of conductivity at varying : and r .

rs p HNC (/bp)DH

0.05 0.4- 16.2 14.6
1.0 12.7 11.9

0.1 0.4- 8.61 7.691. i 0 6.16 5 .77

0.2 0.4- 6133 4.52
1.0 3.36 3.12

0.5 0.4- 4.13 3.55
1.0 2.07 1.87

1.0 0.4- 5.29 4.88
1.0 2.13 1.88

2.0 0.4- 12.3 11.6
1.0 3.72 3.11

'
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Conclusions

A review of studies of electrical conductivity in a plasma

has been presented. The report began with a description of

domains and parameters of plasma physics common to such studies.

An historical account of calculations led to the conclusion

that the formulas most germain to conductivity in a classical

strongly coupled plasma were those obtained by Boercker et al.27

These findings were reported in section V concluding with a

list of numerical results given in Table 1.
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NONLINEAR ELECTRICAL CONDUCTIVITY FOR STRONGLY COUPLED PLASMAS

Summary

A nonlinear analysis of electrical conductivity in a plasma

is given stemming from the Uehling-Uhlenbeck equation. Aniso-

tropy due to an applied electric field is incorporated through

a Legendre polynomial expansion of the distribution function.

The plasma is comprised of ions, electrons and a neutral compo-

nent. The electron-ion interaction is described by a shielded

Debye potential at high energy and a cut-off Coulomb potential

at low energy. A nonlinear equation for the distribution func-

tion is solved and yields

fst(X) - 1
1 + BeA(x)

for the symmetric part of the solution. Nondimensional energy

is x, B is a normalization constant and A(x) is an explicit

integral dependent on the electric field and specifics of the

interaction. Resulting nondimensional conductivity a, is given

by

1 23/2 ac(Z+1)1/2 d dxa (g) oF*f= stX) - d

A*QD 0 SLQ
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where Z is effective ionization, aC is the ratio of charge to

total heavy-particle density, Q is dimensionless, weighted

cross section and AQ and r. are quantum and plasma parameters

respectively. Application is made to an aluminum plasma and

plots of conductivity vs electric field are obtained. These

plots exhibit three distinct regions. With increase in field

strength these are: Ohmic, Coulomb-dominated and neutral-

dominated.
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Introduction

Previous kinetic studies of electrical conductivity in

plasmas have, for the most part, involved linear theory. Thus,

for example, approaches based on the Kubo '2 formula involve

linear response theory; those based on a Chapman-Enskog expan-

sion employ a linearized collision integral in the Boltzmann

equation; whereas others start with a linear equation such

as the linear Krook equation,6 or the linearized Fokker-Planck
7

equation. As a consequence, such analyses can obtain expres-

sions for current which, at best, are linearly dependent on

electric field.

The present non-linear analysis begins with the Uehling-

Uhlenbeck 8 quasi-clzssical kinetic equation. A Lorentz expan-

sion9 of the distribution function in terms of Legendre Poly-

nomials I0 ,11, 12 is employed to account for anisotropy in the

distribution function due to the presence of an electric field.

The analysis addresses a three-component plasma comprised of

electrons, heavy ions of arbitrary ionization Z, and neutrals.

These latter two components are assumed to be in equilibrium.

The interaction between electrons and ions is described by a

shielded Coulomb potential. It is found that the presence of

the neutral component inhibits over population of the tail of

the distribution function, better known as the 'runaway

effect' 13
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Two key parameters which enter the analysis are the Debye

plasma parameter rD and quantum degeneracy parameter, AQ.14

Thus when rD > 1 the plasma is termed strongly coupled and when

AQ > 1 it is degenerate. The present ..urK bridges the quasi-

classical (AQ = 1) and classical domains (AQ << 1). Further-

more, apart from the assumption of a specific interaction poten-

tial, the analysis should prove valid in the strongly-coupled

domain as well.

A nonlinear equation is obtained for the symmetric part

of the distribution and solved exactly. In the limit of zero

electric field the total distribution reduces to the Fermi Dirac

distribution. For small-electric field it gives the displaced

Fermi Dirac distribution. In the classical domain it returns

the Druyvesteyn distribution.
1 0'15

Integrating the total distribution function gives a closed

expression for conductivity as a function of electric field.

Numerical integration at constant heavy-particle temperature,

density and ionization, yields conductivity vs electric field

for various values of ion density. For reasonable charge den-

sities three distinct regions are evident. At low field values

Ohm's law is obeyed. At intermediate fields the conductivity

rises due to effects of the Coulomb cross section. At high

fields the hard core potential of the neutral component domi-

nates yielding the familiar E -I / 2 fall off of conductivity. 16
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Analysis

Starting equation

Our starting equation is the Uehling-Uhlenbeck quasi-

classical kinetic equation,8 appropriate to a plasma comprised

of electrons, ions and neutrals. It is assumed that ions and

neutrals are of the same mass, M, and are both in equilibrium

at the temperature T. These equilibrium distributions are

given by

FC(y 1 ) = acFo(y,)

(1)

FN(y) - aNFo(y)

where

3/2 i-Mv*/2kBT
F (v) no e (2)

and acno and aNn0 are ion and neutral number densities respec-

tively. With aN+aC i, n0 represents total heavy-particle

number density.

With these assumptions our starting kinetic equation for

the electron distribution function, f(xy,t) is given by

3f eE f -1
3f v 3f + _ jc(f,Fc) J(fF (3)

where E is applied electr4- field and m is electron mass. The
17

collision integrals are given by (in Boltzmann notation )
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Ji(fF) 1 [f'(l-f)Fi - f(l-f')FilaigdodYi (4a)

where

E(2fi/m) , g - (4b)

and F denotes either FC or FN and ai is the corresponding elec-

tron heavy-particle cross section. Inserting (1) into the RHS

of (3) gives

J- Ji + JN - 1(f'(l-&rF0 1 - f(l- f')F 0 1jagddvj (5)

Here o represents the composite cross section

SacCC + aNaN (6)

Combining (5) and (3) gives our starting kinetic equation for

the subsequent anal!sis. We will apply this equation to an

equilibrium homogeneous plasma for purposes of calculating elec-

trical conductivity. There results

eE ;f;0 . J(f) (7)
m 3v

with J(f) given by (5).

Lorentz Expansion

To account for anisotropy in the distribution f(y) we

expand it in Legendre polynomials as follows.

f(V) = PZ(I)fZ(v) (8)
Z=O

where

u E (9)
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and hatted variables are unit vectors. Substituting (8) into

the LHS of (7) and keeping z-1 terms gives

Pf + fdfl + 1) df°
3J + P 0~ (10)

Substituting the series (8) into the RHS of (7) we obtain

J(fo + Uf) J(fo0 + J(fo 'fl) (Ila)

where

Aj(fo,f 1 ) - r{('fi(l-&fo- fl) -f (ilfl)lF61

(11b)

- [ufl(1- f,-iP'fj) -f o (t'fi)]F 0 1 } gd2dvl

(Note that fl= fl (v) whereas Fol. Fo(vl).] With

2 _ in

M+M

taken as a parameter of smallness we find (see appendix A)

F61 -F + 0(,:)F01 = 01 0

V' v + 0(Z)

Keeping terms of leading order, (11b) becomes

AJ(fof 1 ) = norf j (4'-u)cgd1 (12)

With

Q(vE = f(l-cos i) (v,e)dO (13)

the preceding equation becomes, to this same order (see

Appendix B)
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a (fl0 f) f -nof lUVQ (14)

Combining (7, 10, 11 and 14) and equating coefficients of like

Legendre-polynomial degree gives

eE d-- J(fo) (15a)
TM + -f1 - 0

V 0

eE df - -n f VQ  (15b)

We note that (15a) may be rewritten

eE 1 d 2
I d (Vf J(fo) (16)

Integrating v in this equation over a sphere of radius v we find

4l(eE ) I( ) (17)

T-v f 1 (v) (17

where

( j) - j{jv [fo(l- fo)F61 -f (1-fo)Fl]ogv2 dv}dPdvdl (18)

and,

dy - v2dvdi v

Evaluation of 1( )

As is shown in Appendix C, I(v) may be reduced! to the form

(to leading order in E)

2.

10y) =j 4' o (F 0 1  gv dv dP d~vdY (19)
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where

AV- I (20)

We concentrate on the integrand of (19)

X = fo0(l-Efo)F 01 Yg v2 (21)

With the observations

< v < + Av, Av = o(E)

we expand

dfo( )

fo = f (v) f () + (v-v) dv +
0 0 0-- v

df o(V)

f f 0 (v') 10 ( ) + (v'-v) d v)

and obtain, to leading order in E,

df ( ) df )f lo(V)[I-&foV)]1 + ? 2 dv + ' M -3$f(V)2°2v
0 0 ~dv~4~3 f() u- (22)

where 'i(Y ,,,vI)are known functions (see Appendix D.)

Writing (18) to leading order in we find

df0  df0o(- fo)  + ? - + 13 :f 0  -- (23)

where

Ij = jdvds2vd-dv, (2L)
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.A

Following a technique introduced by Davydov we concentrate on

12•

1 (v- )F0 1 (V1)a (v, )dvd2 (25)

Integrating over v and noting the equality

Qdy1 -.v dy1
[ YYdY "1 7 1~

(where T is the unit tensor) we find

12 = 2 (1-cos )F0 1(vl)G(V,a) 3vdQdsld

With the distribution (2) we note that

fr F0 (v1 ). Mv 2 dy1  3 n nkBT

which gives

-3nok B T
12 = 413 M Q(v) (26)

It is evident from (18) that l(v) depends on E only through

its dependence on fo" However we see that I as given by (23,24)

do not depend on fo. With this observation we evaluate I. from

17) by setting E=0. We choose fo(v,E) at E-0 to be the Fermi

Dirac distribution

fo(V.O) =o(27)( B exp(mv2 /2kBT)

qhich has the properties
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df0 (v, 0) MV (1-f)f

d - ( (28)

Furthermore, fo(v,E) is normalized by

fo 4vdv-n (29)
0

where n is electron density. With this distribution at hand we

obtain

my
I1 12 , 13 0 (30)

B'

Inserting these values into (23) gives the result

4irnov Q(v) dfO
I(0) M 0 o (  0vfd) + kB- (31)

With 1(e) thus evaluated we return to (17).

Equation for f(y)

Combining (15b) and (17) gives

- (TV -oQ -- -f ( (32)

Inserting (31) into this equation and introducing the dimension-

less energy,

2
mv (3

~B

gives, after some reduction, the nonlinear equation
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df o
[X+s(x)] x + xf 0 (1-Ef o ) 0 (34)

where

S ]I M eEj (35)

Integrating (34) we find

f O() eA(X) (36)

where

A(x) fx x'dx' ,0 x' + s(x') 37

First note that (36) and (37) give

df
0 x (lfo) f°  (38)

which is seen to reduce to (28) in the limit s=0.

With (38) and recalling (8) and (15b), we obtain the

total distribution function

f(x) - f (x)(l-u[6Es(x)]i/2 x P0 x+s(x) 01 oX] }  (9

It is convenient at this point to introduce the dimensionless

distribution1
8

fSL(x) = Af(X)
I + BeA(X) (40)

where B E This distribution has the normalization

7o

V -, -~ . . t* *~b



(x xli~dx (4L)

where

A n x 3  (42a)
Q d

and Xd is the thermal deBroglie wavelength

9

X2 2r (4 2b)
d mkBT

Note that in the classical limit, 1.0 [see (4b)] and fSL(x)

goes to the Druyvesteyn distribution. For low electric field,

from (35,37) we see that s = 0, A(x) x and (38,39) return the

displaced Fermi-Dirac distribution.

Conductivity

Calculation of Q integrals

Employing the distribution (39) gives the current density

(after an integration by parts)

- [E ]2 k- (x)dx (43)

Evaluation of the integral in this expression demands knowledge

of Q(x) as given by (13). Inserting the composite cross section

(6) into (13) we find

Q = . - cos i)[(3,C + aNNd (,4a)

or, equivalently,

Q QC + QN (-4b)
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where QC and QN correspond to the charge and neutral components

of (44a), respectively. For QC we employ the results of Liboff
20

for the high-energy domain and those of Chapman and Cowling
15

relevant to the low-energy domain. In the Cirst of these cal-

culations the electron-ion interaction potential was taken to be

V(r) _ Ze2 exp(-r/XD) (45a)

where the Debye distance AD is given by

A-2 4racnoe 2

kBr Z(Z+1) (45b)

In the low-energy calculation the potential was taken to be

V(r) - Ze 2  r < \ (46)

and zero for r > AD" Related cross sections are as follows.

We introduce the dimensionless cross section

Q A2  (47)

where

Ze
2

-B'

is the so-called "distance of closest approach." Li.off's

result may then be written

a. FK X ('8)C.L X2 D

- in , - ',-I1 '



wahere y is Euler's constant and

r' D

is the conventional plasma parameter. Chapman-Cowling's result

appears as

- C ln[4 Li9]
A smooth interpol-,cion formula bridging the two results (48,49)

is given by

ad 1  2 x 4
QC- '1 In +nl# + 3 1Kex (50)

See Fig. 1.. For x > r D' (50) gives QC QC,L whereas for

X < Dtit gives QC= C _.

Lastly for QNwe set 2
1

aY N a 0) (51)

where a is a pure number between one and six and a 0is the Bohr

radius. For example, for Al, ac= 2.4. With (51) we find

QN a N (52)

Substituting (50) and .52) into (44b) gives the desired corn-

posite Q
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With (47), the expression (35) may be rewritten

s -E)Q (53)

where the characteristic electric fiela

f no7r6 2kBT

E-= 6 TA (54)o " KM " e B

Furthermore we note that the parameters rD and AQ may be con-

veniently written in terms of the Bohr radius, ao -- /me2 and
2

Rydberg, R = e /2ao.

r 2 ra cZ 3 (Z+) (na3 2R 1 (55a)

,2 3 2 ! 2 31 : 2R I
(2) a (55b)

These forms give

no3 ,,Z(Z+l) 5a

n a -(56a)

2 2aC D

kB 3 4 2 1

R . - Z4 (Z+1) LI (56b)

with these expressions at hand E as given by (54) may be

written
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31/2 1/2 z5 313 1z+1"3

- 5/6 2/3 aC  (57)
ela 2 - - D

where ela 2 5.14 x 109 V/cm.
0

Evaluation of Conductivity

Rewriting (43) in the form

J - a E (58)

and setting

- C/W P (59)

where

2 4racn0Ze
2

WO m

we obtain

AQ D C TSL (x) x dx (60)

where fSL(x) is given by (40) and Q by (46b), (50) and (52).

Note that 3 as given by (60) is a function of E, Z, aCt no and T

where, we recall, T is heavy-particle temperature. We apply

this formula to an aluminum plasma with no = 1020 and k BT = 5eV

for which Z = 2.5. With these values, (57) gives

E- 8.97x i04 V/cm. Takiug a = 2.4 in (51) permits evaluation

of as given by (60) with aG a free variable. Numerical plots

of vs (E/Eo ) for these values at aC 0.1, 0.5 and 0.9 are

shown in Fig. 2.
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Three regions of behavior are apparent from these curves.

For low electric field the curves are seen to obey Ohm's law.

At E = O.1E nonlinear effects due to the Coulomb cross sectiono

come into play which are evidently more prcaounced for higher

ion density, acno* At E = 0.3E 0 the Coulomb cross section gives

way to the cross section of the neutrals resulting in a E "I/2

fall off of conductivity.

Conclusions

Starting with the Uehling-Uhlenbeck quasi-classical kinetic

equation we have addressed the problem of nonlinear electrical

conductivity in a plasma comprised of electrons, ions and

neutrals. A Legendre polynomial expansion was introduced to

account for anisotropy of the electron distribution function

due to the applied electric field. An interpolation was intro-

duced to bridge the low and high energy components of the

electron-ion cross section. An exact solution of the resulting

equation for the electron distribution was obtained which was

found to go to consistent limits in the classical and quantum

limits. With this distribution at hand an explicit formula for

electrical conductivity was obtained in terms of E, Z, aC' no

and T. Numerical plots of conductivity vs electric field for

a specific case of an aluminum plasma at varying va.ues of aC

were obtained. These curves revealed three distiict domains of

behavior which were associated with various components of the

cross section.

76



Appendix A

In this appendix we wish to justify the relations pre-

ceding (12). With

2: m (Al)

the center of :zass velocity is given by

G E2 v +(1-C 2 )Y1  (A2)

With relative velocities defined by

g - (A3.a)

g,- v'-Y (A3.b)

we find

v 2 .V 1
2 _ 2e2 * (g'- g) (A4.b)

Dropping terms of order e then gives

v' =v+

Vj =v (A5.b)

The latter of these relations gives, to O(e)2 the desired

result

F61 =F01
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For electron temperature T e equal to or in excess of ion

temperature T, we write

3  k T 1 M 2 > 1 v2> = 3 k T(M
7 B -< -><< m kB e (

or equivalently, <x> > 1. In addition this relation gives

vI I (A7)
V

This result together with (A3.a) permits (A5.a) to be written

V' v+V 1  (^1- (S

which to OW~ returns the relation

V' -V (A9)
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Appendix B

We wish to derive (14). Recalling (12) we write

AJ(f0 f 1 ) = nof I f (4'- Li) gdP, (Bi)

Dropping terms of order z, we note

V gE

* E - E (B2)

g V

With g =g(0,0,1), E E(sina, 0, cosa) and g' =g(sinecoso,

sin a sin o, cos e)

1.'=cos a cose + sin a sin acos t (33)

Li COS a

Integration over ds2 gives no contribution from the cos o term of

4i'. There results

Aj(folf) I nofivui f (1-cosa)cdQ2 (B4)

which with (13) returns (14).
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Append ix C

En this appendix, we wish to derive (19). Recalling (18)

we write

f { f t(I- f0)F6i - f0 (l-&f )FOlbogv 2d) d~dQdv (Cl)

Consider the transformation which exchanges primed with unprimed

variables. We find

dg dy' dvi - dg' dy dy1  (C2b)

a(g) -a(g') (C2c)

where (C2c) holds due tc the invariance of the inverse cross-

section. 17 With (C2) at hand, we obtain

(C3)

-f (1-rf o F~jcgdydS~dyj f ff(1-ifo)F01 agdvd2dv1
V 1Kv IV y' 0

From (A8) ly'! < v and lyl <K v , (-9') are equivalent to

order E. Combining this fact with (Cl) and (C3) returns the

desired result, (19).
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Appendix D

In this appendix the functions Ti. of (22) are found. With

the observations

v < v < v+ AV (DI)

and that av as given by (20) is of order e, we find

g - v + 0(E) (D2a)

V 2 2 + 0(w (D2b)

V - O (E) (D2c)

V, - v O(E) (D2d)

O(g,i') - CO,g') + 0(c:) (D2e)

Inserting these expressions into (21) and expanding f 0 andf

about v, we obtain

f 2 1&f) -lg f 0()(L fo ( )) 01(

+ (v-' ) df 0 O- ')F( -0 i)3

(D3)

* - ~ (~)('-~)df 0  .

+ A(g',v, , f()l ) V +(-

where the function A(j ,v,v,) is of order c.Comparison of

the above expression with (22) serves to identify the vi*

functions.
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